The thiophene ligands of complexes **1-3** are labile. The dbt ligand of **1** is displaced by ca. 2 equiv of CH_3CN in CD_3NO_2 solution at **room** temperature in about **1** week to give [Fe- $(CH_3CN)(CO)_2(Cp)][BF_4]$ and free dbt. In contrast, the thiophene ligand of 2 is quantitatively displaced by CD_3NO_2 in ca. 3 h at room temperature.²⁷ The benzothiophene ligand of **3** is also displaced by CH3CN or CD3N02. Decomposition of **3** to $[Fe(CO)₃(Cp)][BF₄]$ occurs during attempted slow recrystallization from dichloromethane/ethyl ether.

The 13C NMR spectrum of benzothiophene complex **3** shows a singlet at room temperature for the two diasterotopic carbonyl ligands but two separate signals at 170 K ($\Delta G^* = 39$ kJ/mol at 190 K, the coalescence temperature in CD_2Cl_2) due to slowing of the stereochemical inversion at sulfur.^{22,28} Free benzothiophene signals remained sharp and distinct from those of complex **3** at room temperature, ruling out an intermolecular mechanism for coalescence in **3.** To our knowledge, this is the first reported sulfur inversion barrier for a thiophene complex. For comparison, the I3C NMR signals of the carbonyl ligands of [Fe(PhSMe)- $(CO)₂(Cp)$] [PF₆] coalesce at 249 K with $\Delta G^* = 52 \text{ kJ/mol}.^{22}$ In general, inversion barriers for π -conjugated sulfide ligands are about 10 kJ/mol lower than for saturated sulfide ligands, whereas cyclic sulfide ligands have inversion barriers slightly higher than acyclic ones.28b

Recent work by Angelici^{8a, 10a-c} suggests that π -bonded thiophene species are responsible for C-S bond cleavage and hydrogen/ deuterium exchange on hydrodesulfurization catalysts. The isolation and characterization of **1** provides a structural model for the interaction of organic sulfur in coal with a metallic catalyst via sulfur only, which is a viable initial step in hydrodesulfurization.¹⁷

Acknowledgment. We thank the Consortium for Fossil Fuel Liquefaction Science, funded by the Pittsburgh Energy Technology Center, United States Department of Energy, for financial support, and Robert Angelici for helpful discussions and a preprint of ref 1oc.

Supplementary Material Available: For the structure of **1,** tables of crystal data and details of the intensity collection and refinement, positional and thermal parameters, bond distances, bond angles, and leastsquares planes (9 pages); a table of observed and calculated structure factors (15 pages). Ordering information is given on any current masthead page.

- (b) Abel, E. W.; Bhargava, S. K.; Orrell, K. G. *Prog. Inorg. Chem.* **1984, 32,** 1-1 18.
- (29) ORTEP: Johnson, C. K. "ORTEP", Report ORNL 5138; Oak Ridge National Laboratory: Oak Ridge, TN, 1976. DIRDIF: Beurskens, P.
T.; Prick, P. A. J.; Van den Hark, T. E. M.; Gould, R. O. *Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.* 1980, **36A,** 653-656.

Received May 19, 1987

Halide-Promoted Formation and Carbonylation of μ_3 -Nitrene Ligands on Ru₃ Clusters

Sir:

Bridging carbene ligands in polynuclear compounds often **un**dergo facile carbonylation to form ketene ligands, μ -CR₂ + CO $\rightarrow \mu$ -CR₂=C=O.¹ However, the related carbonylation of

Figure 1. ORTEP drawing of the cluster anion in [Na(18-crown-6]- $[Ru_3(\mu_3-NPh)(CO)_9(I)]$ **(3c):** $Ru(1)-Ru(2), 2.770$ **(1)** Å; $Ru(1)-Ru(3),$ 2.740 (1) Å; Ru(2)-Ru(3), 2.711 (1) Å; Ru(1)-I, 2.762 (1) Å; Ru(1)-N, 2.056 (5) A; Ru(2)-N, 2.077 (5) A; Ru(3)-N, 2.052 (6) A; Ru(l)-C(9), 2.053 (7) Å; Ru(2)–C(9), 2.168 (6) Å; Ru(3)–C(9), 2.329 (7) Å; Na...I, 3.680 *(5)* **A;** Na...0(6), 2.871 (7) A; Ru(l)-Ru(2)-Ru(3), 60.0 (0)'; $Ru(2)-Ru(3)-Ru(1), 61.1 (0)^o; Ru(3)-Ru(1)-Ru(2), 58.9 (0)^o; Ru-$ (1)-C(9)-O(9), 139.1 (5)°; Ru(2)-C(9)-O(9), 132.8 (5)°; Ru(3)-C- $(9)-O(9)$, 126.8 (6) °.

bridging nitrene ligands to form isocyanates, μ -NR + CO \rightarrow μ -RN=C=O, has proven difficult to achieve,²⁻⁵ even though such a reaction has been invoked as an important step in catalytic nitroaromatic carbonylation.6 We earlier demonstrated that halides accelerate the methylene to ketene conversion,^{1b} and herein we show that they also dramatically promote nitrene carbonylation to form isocyanates. Furthermore, halides have also been found to accelerate the *formation* of nitrene ligands from nitrosobenzene.

The resistance of nitrene clusters to carbonylation is particularly well illustrated by the high yield recovery of $M_3(\mu_3-NPh)_2(CO)_9$ $(M = Fe, Ru)$ following attempted carbonylation at 120 atm, 150

- Smieja, J. A.; Gozum, J. E.; Gladfelter, W. L. *Organometallics* **1984**, **6**, **1911** (3) *6.* _. **1311.**
- The M₃(μ_3 -NPh)₂(CO)₉ clusters were recovered in 69% (M = Ru) and 89% (M = Fe) yields, respectively.
Basu, A.; Bhaduri, S.; Khwaja, H. *J. Organomet. Chem.* **1987**, 319,
- **C28.** (a) Bhaduri, **S.;** Gopalkrishnan, K. S.; Clegg, W.; Jones, P. G.; Shel-
- drick, G. M.; Stalke, D. J. *Chem. Soc., Dalton Trans.* **1984,** 1765. (b) Cenini, S.; Pizzotti, M.; Crotti, C.; Porta, F.; Monica, G. L. *J. Chem.* Soc., Chem. Commun. 1984, 1286. (c) Alper, H.; Hashem, K. E. J. Am. Chem. Soc. 1981, 103, 6514. (d) Des Abbayes, H.; Alper, H. J. Am. Chem. Soc. 1977, 99, 98. (e) L'Eplattenier, F.; Matthys, P.; Calderazzo, F. Inorg. Chem.

⁽²⁷⁾ In our hands, the ¹H NMR spectrum of **2** in $(CD_3)_2CO^{13a}$ shows free thiophene and $[Fe((CD_3)_2CO)(CO)_2(Cp)]^+$.

(28) (a) Kuhn, N.; Schumann, H. *Inorg. Chim. Acta* **1986**, *116*, *L11*–*L12*.

⁽a) Bassner, S. L.; Geoffroy, G. L. *Ah.* Organomet. Chem., in press. (b) Morrison, E. D.; Geoffroy, G. L.; Rheingold, A. L. *J. Am. Chem. SOC.* **1985, 107,** 3541. (e) Morrison, E. **D.;** Steinmetz, G. R.; Geoffroy, G. L.; Fultz, W. C.; Rheingold, A. L. J. *Am. Chem. SOC.* **1984, 106,** 4783. (d) Lin, **Y.** C.; Calabrese, J. C.; Wreford, S. S. *J. Am. Chem. SOC.* **1983,** *105,* 1679. (e) Roper, M.; Strutz, H.; Keim, W. J. *Organomel. Chem.* **1981, 219,** C5. *(f)* Holmgren, **J.** S.; Shapley, J. R.; Wilson, S. R.; Pennington, W. T. *J. Am. Chem. SOC.* **1986,** *108,* 508.

 (2) **(a)** Williams, G. D.; Whittle, R. R.; Geoffroy, G. L.; Rheingold, A. L. J. *Am. Chem. SOC.* **1987,109,** 3936. (b) Han, **S.** H.; Geoffroy, G. L.; Rheingold, A. L. *OrganomeiaIlics,* in press. (e) Han, S. H., unpublished observations.

 $\rm ^oC$ for 22 h in THF solution.^{2,4} The mono(nitrene) cluster $Ru_3(\mu_3-NPh)(CO)_{10}$ (1) is a bit more reactive and has been reported to slowly (6.5 h) carbonylate to give PhN=C=O and $Ru(CO)_{5}$ under 170 atm of CO at 120 °C,³ although we observed no reaction when lower CO pressures (4 atm, 120 °C, 22 h) were used. A recent report showed that these carbonyiations are markedly solvent dependent and that both 1 and $Ru_3(\mu-NPh)_{2-}$ (CO)₉ form PhN= $C=O$ and $Ru_3(CO)_{12}$ when heated at 140 °C under 20 atm of CO in $CH₃CN$ solutions.⁵

We find that addition of 1 equiv of halide to THF solutions of **1** dramatically promotes the carbonylation such that it proceeds rapidly and under far milder conditions (22 \degree C, 1 atm CO) than those noted above. The products of this reaction are $PhN=C=O$ and the known halide-bridged clusters 2a-c, Scheme I.⁷⁻⁹ Infrared spectral changes showed that the halide promotion proceeds via the near instantaneous formation of the substituted cluster anions **3a-c,** and these in turn react with CO to give the observed products. The half-life data given in Scheme **I** show that chloride is clearly the superior promoter. The cluster anions **3a-c** can be isolated in high yield from the direct reaction of **1** with halides in the absence of $CO¹⁰$ and complex **3c**, as its $[Na(18-crown-6)]^+$ salt, was structurally characterized (Figure 1).¹¹ Similar salt, was structurally characterized (Figure 1).¹¹ structures are indicated for **3b** and **3c on** the basis of IR data. The iodide is terminally bonded to one Ru trans to the μ_3 -CO ligand. The only notable structural consequence of the halide substitution is a movement of the μ_3 -CO ligand closer to Ru(1) and away from Ru(2), but there is little change in Ru-Ru and Ru-N distances as compared to **1.12**

Although the reasons for the observed halide promotion are unknown, we suggest that halides facilitate the reaction by labilizing a Ru-N bond to form a *di*bridging nitrene that then undergoes nucleophilic attack **on** a coordinated CO *(eq* 1). This

may occur as a consequence of the increased cluster electron density caused by the presence of the halide, or as indicated in eq 1, it may be induced by the halide assuming a bridging position as it displaces a PhN-Ru bond. Note that there is **no** change in cluster electron count in the $I \rightarrow II \rightarrow III$ conversion, and these three species may actually be in equilibrium. In support of this suggestion we note that $H_2Os_3(\mu\text{-RNCO})(CO)_8(PMe_2Ph)$ (R =

- (a) Lavigne, G.; **Kaesz,** H. D. *J.* Am. *Chem.* **SOC.** 1984,106,4647. (b) (8) identical with that of 2a and furthermore upon protonation they give the $Ru_3(CO)_{10}(H)(X)$ clusters previously characterized in ref 8c. (c) Kampe, C. E.; Boag, N. M.; Knobler, C. B.; Kaesz, H. D. *Inorg. Chem.*
1984, 23, 1390. (d) Although clusters 2a,b are the initial products of this reaction, they each rapidly add CO to form [PPN][Ru₃(CO₎₁₁(X)]
(4a,b). their formation has been established (Gladfelter, W. L., private com-
munication; see also ref 8a). IR for 4a: v_{CO} (THF) = 2099 (w), 2006
(w), 2026 (vs), 2010 (s), 1991 (sh), 1970 (sh), 1961 (m), 1828 (m),
1773 (w) cm
- ¹ and by its conversion to PhNHC(O)OMe upon addition of MeOH.
- IR (THF) for 3a: $v_{\text{CO}} = 2070 \text{ (m)}$, 2039 (vs) , 2016 (s) , 1991 (s) , $1703 \text{ (w)} \text{ cm}^{-1}$. IR (THF) for 3b: $v_{\text{CO}} = 2027 \text{ (m)}$, 2041 (vs) , 2018 (s) , 1989 (s) , 1941 (sh) , $1707 \text{ (w)} \text{ cm}^{-1}$. Anal. Calcd for $C_{51}H_{35}O_9N_2P_2IRu_3$: C, 46.68; H, 2.67. Found: C, 46.14; H, 2.70.
- Crystallographic data for $[Na(18-crown-6)][Ru_3(\mu_3-NPh)(CO)_9I]$: *P*I, $a = 10.369$ (3) Å, $b = 13.335$ (3) Å, $c = 13.738$ (3) Å, $\alpha = 79.54$ (2)^o, $\beta = 77.03$ (2)°, $\gamma = 86.76$ (2)°, $V = 1820.1$ (6) \AA^3 , $Z = 2$, and $R_F = 4.55\%$, $R_{\rm wF} = 5.20\%$ for 5663 reflections with $F_{\rm o} \ge 4\sigma(F_{\rm o})$.
Bhaduri, S.; Gopalkrishnan, K. S.; Sheldrick, G. M.; Clegg, W.; Stalk
- D. *J. Chem. SOC., Dalton Trans.* 1983, 2339.

 t -BuCH $=$ N) has an isocyanate ligand bonded exactly as depicted in **111,** and furthermore this latter species was suggested to derive by reversible attack of a transient μ_2 -nitrene on a coordinated CO as in the **II** to **III** conversion.¹³ Further support for the mechanistic suggestion of eq 1 comes from our observation that the CN- analogue of **3** does not readily carbonylate, which can be attributed to the fact that CN⁻ is not a good bridging ligand and thus does not displace a $PhN \rightarrow Ru$ bond.

Halides also significantly promote the formation of nitrene ligands from nitrosobenzene. The unpromoted reaction between $Ru_3(CO)_{12}$ and PhNO proceeds slowly at 57 °C to give 1 in modest yield (46%, 2 h, THF).¹⁴ However, in the presence of 1 equiv of halide, the reaction occurs within minutes at *22 OC* to give the nitrene clusters **3a-c** in >95% yield. Halides are known to react with $Ru_3(CO)_{12}$ to rapidly form clusters $2a-c$,⁸ and we find that these species in turn react with PhN=O to form **3a-c,** (eq 2).¹⁵ Note that chloride is again the superior promoter.

Halides have been demonstrated to be effective promoters for ligand-substitution reactions of $Ru_3(CO)_{12}$, and although the mechanism has not been firmly established, clusters **2a-c** may be intermediates in this process.^{8a} Since the nitrosobenzene to nitrene conversion likely proceeds via deoxygenation of a coor $dinated PhN=O$ ligand, we suggest that the halide promotion of the PhN=O reaction is simply a consequence of the halide promotion of PhN=O for CO substitution. Note that the relative halide-promoting ability of the ligand substitution reaction^{8a} is exactly the same as that observed for reaction 2: Cl^- > Br⁻ > I⁻. Our observation that PhN=O reacts within seconds with $Ru_3(CO)_{11}(CH_3CN)^{16}$ at 22 °C to form $Ru_3(\mu_3-NPh)(CO)_{10}$ supports the proposal that halides promote the reaction by accelerating the opening of a coordination site for PhN= \sim O to bind.^{2c}

Cenini et al. have previously shown that halides are effective promoters for the $Ru_3(CO)_{12}$ -catalyzed carbonylation of $PhNO_2$ in the presence of ROH to form alkyl N-phenylcarbamates and aniline (160-170 °C, 82 atm, 7 h, Cl⁻/Ru₃ = 7/1).^{6b} These workers observed that chloride was a much superior promoter than iodide, both for percent conversion and selectivity to the desired carbamate. Our findings are consistent with their observations since chloride is a substantially better promoter than iodide for both the PhNO to μ_3 -NPh conversion and the nitrene carbonylation. We thus suggest that the stoichiometric reactions observed in our study model the individual reaction steps that occur during the halide promoted catalysis.

Acknowledgment. We thank the Office of Basic Energy Sciences, Department of Energy, for support of this research, Johnson Matthey for a loan of Ru salts, and Wayne Gladfelter for stimulating discussions.

-
-
- (16) Foulds, *G.* A.; Johnson, B. F. G.; Lewis, J. *J. Organomet. Chem.* 1985, 296, 147.

 $PPN^+ = (PPh_3)_2N^+$. (7)

⁽¹³⁾ Deeming, A. J.; Fuchita, Y.; Hardcastle, K.; Henrick, K.; McPartlin, M. J. Chem. Soc., Dalton Trans. 1986, 2259.

(14) Smieja, J.; Gladfelter, W. L. Inorg. Chem. 1986, 25, 2667.

(15) CO₂ was collected and identified by high-resolution mass spectrometry.

Supplementary Material Available: Tables of atomic positional parameters and isotropic thermal parameters, bond lengths, bond angles, anisotropic temperature factors, and calculated hydrogen atom positions and isotropic thermal parameters (6 pages); a listing of observed and calculated structure factors for **3c** (42 pages). Ordering information is given **on** any current masthead page.

Department of Chemistry **Sung-Hwan Han The Pennsylvania State University Gregory L. Geoffroy*** The Pennsylvania State University University Park, Pennsylvania 16802

Arnold L. Rheingold

Department of Chemistry The University of Delaware Newark, Delaware 19716

Lewis Acidity of Germanium(I1) in a

Received July 23, 1987

\$-cfoso **-Germacarborane: Synthesis and Structure of 1- (2,2'-Bipyridine)-2,3-bis(trimethylsilyl) -2,3-dicarba- 1 germa-cfoso -heptaborane(6)**

Sir:

Of all the group 14 metallacarboranes, the closo-stannacarboranes have been widely explored in terms of their reactivity and bonding.14 This has partly **been** the result of more structural data being available for these compounds.2 It has **been** established that the apical tin atom in the stannacarborane is in its $+2$ oxidation state and has an unshared pair of electrons.^{1c,2b} Despite the presence of this lone pair, there seems to be no tendency to form donor-acceptor complexes with Lewis acids, such as BF_3 . On the contrary, the tin atom acts as a Lewis acid site and forms red complexes with tetrahydrofuran, 2,2'-bipyridine, and 2,2' bipyrimidine.^{2,3} Our more recent synthetic and structural studies on the donor-acceptor complexes of the closo-stannacarboranes have raised several fundamental questions regarding the bonding of tin to the C_2B_3 face of carboranes.³ To date, the specific factors influencing the orientation of the base bound to the apical tin and the slippage of this metal in the complex toward the three borons of the C_2B_3 pentagonal face have not been explained theoretically.

During the course of our investigation in this area, we sought to examine the reactivity of the analogous *closo-* 1 -Ge-2,3- $(Me₃Si)₂ - 2,3-C₂B₄H₄ (I)⁴ toward Lewis bases. In addition, we$ also intended to investigate further whether the same factors that determine slippage of the heteroatom and orientation of the base in the closo-stannacarboranes could be operative in the donoracceptor complex with closo-germacarborane I, if this complex could be made at all. When a benzene solution of I and 2.2'-

- (1) (a) Grimes, R, N. *Rev. Silicon, Germanium, Tin Lead Compd.* **1977,** 223. (b) Todd, L. J. **In** *Comprehensive Organometallic Chemistry;* Wilkinson, G., Stone, F. G. **A.,** Abel, E. W., **Eds.;** Pergamon: Oxford, England, 1982; Vol. 1, Chapter 5.6 and references therein. (c) Hos-mane, N. *S.;* Sirmokadam, N. N.; Herber, R. H. *Organometallics* **1984,** *3,* 1665. (d) Rees, W. *S.,* Jr.; Schubert, D. M.; Knobler, C. B.; Hawthorne, M. F. *J. Am. Chem. SOC.* **1986,** 108, 5369. (e) Hosmane, N. **S.;** de Meester, P.; Siriwardane, U.; Islam, M. *S.;* Chu, S. S. C. *J. Chem.* **SOC.,** *Chem. Commun.* **1986,** 1421. *(f)* Siriwardane, **U.;** Islam, **M. S.;** West, T. **A.;** Hosmane, N. *S.;* Maguire, **J. A.;** Cowley, **A.** H. *J. Am. Chem. SOC.* **1987,** 109,4600. (8) Islam, M. S.; Siriwardane, U.; Hosmane, N. S.; Maguire, J. **A.;** de Meester, P.; Chu, *S.* S. C. *Organometallics* **1987,** *6,* 1936.
- (2) (a) Cowley, A. H.; Galow, P.; Hosmane, N. S.; Jutzi, P.; Norman, N. C. J. Chem. Soc., Chem. Commun. 1984, 1564. (b) Hosmane, N. S.; de Meester, P.; Maldar, N. N.; Potts, S. B.; Chu, S. S. C.; Herber, R. H. Organometal **S.;** Chu, *S .S.* C. *Acta Crystallogr. Sect. C: Cryst. Struct. Commun.* **1987,** *C43,* 1067. (d) Hosmane, N. *S.;* Maguire, J. A. **In** *Molecular Structure and Energetics;* Liebman, J. **F.,** Greenberg, **A.,** Williams, R. E., **Eds.;** VCH: New York, 1987; Vol. 5, Chapter 14 and references therein.
- (3) Hosmane, N. *S.;* Islam, M. **S.;** Siriwardane, U.; Maguire, J. **A,;** Campana, C. F. *Organometallics,* in press.
- (4) Hosmane, N. **S.;** de Meester, P.; Siriwardane, U.; Islam, M. *S.;* Chu, *S . S .* C. *J. Am. Chem. Sot.* **1986,** 108, 6050.

Figure 1. ORTEP view of **I1** showing the atom numbering scheme and thermal ellipsoids at the 30% probability level. Pertinent bonding parameters: Ge-N(9), 2.321 (4) **A;** Ge-N(lO), 2.474 (4) **A;** Ge-B(3), 2.255 (7) **A;** Ge-B(4), 2.208 (7) **A;** Ge-B(5), 2.371 (7) **A:** Ge-C(I), 2.579 (5) **A;** Ge-C(2), 2.510 (5) **A.**

bipyridine at $0 °C$ was stirred in vacuo, a red solution formed immediately indicating that a complexation has occurred between the reactants. This reaction produced in high yield a previously unknown germacarborane complex, which was isolated as an air-sensitive, bright red, crystalline and sublimable solid.⁵ The structure of the new germacarborane complex, 11, could not be determined from its IR, NMR, and mass spectra⁶ as these data are almost identical with those of its precursor **I4** and 2,2'-bipyridine. Furthermore, the structures of both closo-Ge^{I1}- $(RR'C, B_0H_0)$ and closo-Ge^{II}(RR'C₂B₄H₄) (R, R' = Me₃Si, Me, or H) systems^{1,4,7} have not been reported. Therefore, an X-ray analysis of the red, crystalline solid was undertaken that unambiguously confirmed the solid to be the novel germacarborane complex, $1-Ge(C_{10}H_8N_2)-2,3-(Me_3Si)_2-2,3-C_2B_4H_4$ (II) as rep-

⁽⁵⁾ A benzene (10 mL) solution of $Ge^{II}(Me_3Si)_2C_2B_4H_4$ (I) $(0.62 \text{ g}, 2.13 \text{ m})$ mmol) was added to a benzene (10 mL) solution of freshly sublimed anhydrous 2,2'-bipyridine, $C_{10}H_8N_2$ (0.33 g, 2.13 mmol) in vacuo, and the resulting red solution was constantly stirred for 4 h at 0 °C. After removal of C₆H₆ at 0 °C via vacuum distillation for 4 h, the reaction flask was attached to a detachable high-vacuum U-trap, and the flask was heated gently to 50 °C to sublime the unreacted 2,2'-bipyridine (0.11 g; 0.71 mmol) out of the flask into the U-trap. With identical sublimation procedures and times as described for stannacarborane-
2,2'-bipyridine complexes,^{2b-d} at the sublimation temperature of 90 °C, compound **II** (0.46 g, 1.03 mmol; 73% yield based on $C_{10}H_8N_2$ con-
sumed) was collected in one of the detachable U-traps held at 0 $^{\circ}$ C as
a bright red crystalline solid. This solid (m.p. 88 $^{\circ}$ C) is highly sol

in both polar and nonpolar organic solvents.

(6) IR (CDCI₃ vs CDCI₃; cm⁻¹): 3050 (m, s), 2920 (s, br), 2860 (w)

[ν (C-H)]; 2580 (s) [ν (B-H);] 1880 (m, br), 1620 (m, s), 1555 (s), 1450 (m), 1415 (w, br), 1250 (w, br), 1145 (m, **s),** 1085 (m, **s),** 1065 (w), 1035 (m, br), 990 (m), 960 (w), 930 (w), 820 (vs, br), 750 (vs, br), 670 (m), 650 (w), 610 (m), 390 (m). FT NMR Data: 'H NMR (C₆D₆, relative to external Me₄Si) δ 8.63 [d, 2 H, bpy ring, J ⁽¹H-¹H) = 4.3 [d, 2 \overline{H}_1 (br), 3 H, basal \overline{H}_1 , ¹J(¹H-¹¹B) = 137 Hz], 1.64 \overline{q} (br), 1 H, apical H_1 , ¹J(¹H-¹¹B) = 164 Hz], 0.38 \overline{q} [s, 18 H, (CH₃)₃Si]; ¹¹B NMR (C₆D₆, relative to external BF₃·OEt₂) δ 23.14 [d, 3 B, basal BH, ¹J(¹¹B-¹H)
= 137 Hz], -5.30 [d, 1 B, apical BH, ¹J(¹¹B-¹H) = 164 Hz]; ¹³C NMR
(C_oL_D, relative to external Me₄Si) δ 15.6.02 [s, 2,2'-C The electron-impact (EI) mass spectrum of II does not exhibit the parent ion. However, both the bipyridine ion fragment with 100% relative intensity and the germacarborane precursor ion (I) were present in the **E1** mass-spectrum.

⁽⁷⁾ Jutzi, P.; Galow, P. *J. Organomet. Chem.* **1987,** *319,* 139.